

Tetrahedron Letters 44 (2003) 5799-5801

TETRAHEDRON LETTERS

A real time reaction monitoring using fluorescent dansyl group as a solid-phase leaving group

Toshiro Suenaga,* Caroline Schutz and Tadashi Nakata*

RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan Received 18 April 2003; revised 4 June 2003; accepted 6 June 2003

Abstract—A real time monitoring method to monitor the progress of the solid-phase reaction has been developed. The substitution reaction on the solid-phase was clearly monitored as a change in the color depth using the fluorescent dansyl group as the leaving group. This methodology is applicable to both parallel and split combinatorial synthesis.

© 2003 Elsevier Ltd. All rights reserved.

Organic reactions on a solid support have become very important for constructing a small organic molecule library. Though many types of reactions on solid supports have been extensively developed, relatively limited numbers of monitoring methods of the solid-phase reaction are known.¹

Several methods such as the Kaiser test,² bromophenol blue test,³ picric acid test⁴ and other colorimetric assays on a solid support have been developed mainly for detecting solid supported amines.⁵ A few methods have been reported to detect other functional groups such as hydroxyl group,⁶ carbonyl group,⁷ carboxyl group,^{6a,8} thiols,^{6b,c,9} some protective groups.^{10,11} We now report development of a very simple and rapid real time method for monitoring the progress of the solid-phase substitution reaction using stained leaving group.

If leaving groups or protective groups are stained, the substitution or deprotection process would be clearly monitored as a change in the color depth without using any spectroscopic apparatus, which guarantee rapid analysis for parallel syntheses and also one bead analysis for split synthesis. First, we investigated commercially available dyes. The essential properties of the 'dye' should be: (1) deep color other than yellow in order to distinguish the dye color from the color of the resin itself or remaining impurity on the resin, (2) chemically stable, (3) soluble in standard solvents in order to be easily washed off from the resin after the reaction, (4) small molecule so as not to disturb the

Though dansyl chloride is well known as a reagent for the fluorescent labeling of amines, amino acids, proteins, and phenols, the dansyl group has not been extensively investigated as a leaving group, nevertheless, it has a structural similarity to the tosyl group. 12,13 If the dansyl group could be used in place of the tosyl or mesyl group, many kinds of substitution reactions would be easily monitored on a solid support. Therefore, we initially investigated the reactivity of the dansyl group in the solution phase by comparing it with the reactivity of the tosyl group. The sulfonylation with dansyl chloride and tosyl chloride is shown in Scheme 1. The dansylation of a primary alcohol 2 is slightly

Figure 1. Dansyl chloride.

reactions on the solid support by its bulkiness, and (5) having a functional group to convert or attach leaving group or protecting group. Unfortunately, we were not able to find an appropriate dye with all the properties shown above, but we found the dansyl (5-dimethylamino-1-naphthalenesulfonyl) group to be promising because of its chemical stability, bright fluorescent color upon irradiation, relatively small molecular weight compared to normal dye molecules and its commercial availability as dansyl chloride (1) (Fig. 1).

^{*} Corresponding authors. Tel.: +81-48-467-9374; fax: +81-48-462-4666; e-mail: suenaga@riken.go.jp; nakata@riken.go.jp

Scheme 1. Dansylation and tosylation of various alcohols.

Table 1. Substitution reactions of dansylates and tosylates

Substrate	Condition ^a	Time	Product	Yield (%)
3	A	2.5 h	3-Iodopropyl- benzene	87
4	A	1.5 h	3-Iodopropyl- benzene	94
3	В	1.5 h	3-Azidopropyl- benzene	87
4	В	1.0 h	3-Azidopropyl- benzene	90
3	С	4.0 h	4-Phenylbutyro- nitrile	91
4	С	3.5 h	4-Phenylbutyro- nitrile	92
3	D	16 h	Propylbenzene	83 ^b
4	D	16 h	Propylbenzene	$80^{\rm b}$
3	E	30 min	Heptylbenzene	92
4	E	30 min	Heptylbenzene	92
6	A	2.5 days	2-Iodopropylbenzene	77
7	A	3.5 days	2-Iodopropylbenzene	82

^a A: NaI, acetone, reflux. B: NaN₃, DMF, reflux. C: NaCN, DMSO, 90°C. D: LiBH₄, THF, reflux. E: Bu₂CuLi, ether, -20°C.

slower than the tosylation. The dansylation of a secondary alcohol **5** needs more than twice as much time as the tosylation. Competitive sulfonylation of p-methoxyphenylpropanol (**8**) with dansyl chloride (3 equiv.) and tosyl chloride (3 equiv.) gave 34% of the dansylate **9** and 60% of the tosylate **10**.

Table 1 shows the results of various nucleophilic substitution reactions of the dansylates and tosylates. The iodination, azidation and cyanation of the primary dansylate 3 were slightly slower than those of the tosylate 4. The reduction and alkylation of 3 had

comparable rates to **4**. The iodination of the secondary dansylate **6** was faster than that of **7**. In all cases, the yields are comparable to each other. From these reactivity results, it is clear that the dansyl group can be used in place of the tosyl group.

We then examined the substitution reaction of the dansylated substrate on a solid support (Scheme 2). The mono dansylated 1,8-octanediol 12 was prepared from the diol 11 and 1.1 equiv. of dansyl chloride in 45% yield. 12 Was then attached to the succinic acid linker by treating with succinic anhydride to give the acid 13 in 88% yield. The acid 13 was loaded onto Tenta Gel with DIC. The completion of the reaction was confirmed by the standard Kaiser test.2 An intense light green yellow fluorescence was observed for the resulting dansylated resin 14 upon irradiating with 365 nm UV light. The dansylate 14 was treated with sodium azide in DMF at 70°C for the azidation. At first, we tried the direct observation of the reaction progress for maximum convenience. The solution began to immediately show a light blue fluorescence and the fluorescence of the beads became weak and finally was hidden by the intense background fluorescence of the solution upon irradiation. Though it was clear that the azidation proceeded and was nearly completed, it was difficult to judge the exact completion of the reaction. To precisely monitor the progress of the reaction, a small portion of the resin was taken out from the reaction vessel and placed into a vial. The resin in a vial was washed with DMF (2×) and CH_2Cl_2 (2×) and then observed under 365 nm UV light. As shown in Figure 2, the strong fluorescence gradually became weak in 7 min. Only a very weak fluorescence was observed in 10 min. No fluorescence was observed in 20 min. Thus, the progress of the reaction was monitored as the transition of fluorescence as initially expected. To confirm the completion of the reaction, the azide was cleaved from resin with K₂CO₃ in methanol at room temperature. The crude solution contains only one compound based on the TLC analysis. The solution was neutralized with Dowex 50W-X2 and purified by silica gel chromatography to give pure 8-azidooctan-1-ol (16) in 87% based on the initial loading amount of 13 on the Tenta Gel.

HO
$$\stackrel{\text{A}}{\longrightarrow}$$
 HO $\stackrel{\text{A}}{\longrightarrow}$ HO $\stackrel{\text{ODS}}{\longrightarrow}$ B HO $\stackrel{\text{ODS}}{\longrightarrow}$ O $\stackrel{\text{ODS}}{\longrightarrow}$ O

Scheme 2. Azidation of dansylated substrate on the resin. *Reagents and conditions*: (a) DsCl (1.1 equiv.), Py, CH₂Cl₂, 45%; (b) succinic anhydride, Py, DMAP, CH₂Cl₂, 88%; (c) DIC, CH₂Cl₂; (d) NaN₃, DMF, 70°C, 1 h; (e) K₂CO₃, MeOH, 87% (two steps).

^b Without any further purification.

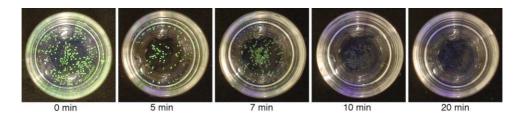


Figure 2. Monitoring azidation reaction by fluorescence.

Figure 3. Substitution rate and fluorescence intensity.

It is important to quantitatively establish the sensitivity of this method. Tosylated acid 17 was prepared as described for the dansylated acid 13. From 50% to 0.001% of 13 were mixed with the acid 17 and each mixture was loaded onto the Tenta Gel with DIC to afford partially dansylated resins, of which the fluorescences were observed upon irradiation as shown in Figure 3. While it was hard to observe the fluorescence at the 0.01% loading, a weak but easily detectable fluorescence was observed at the 0.1% loading. This indicates that the substitution reaction of the dansylated resin is monitored up to at least 99.9% completion. Since the initial loading of the resin used here was 0.23 mmol/g, as little as 0.2 µmol/g dansyl group could be detected. This indicates that this method is more than ten times more sensitive than the Kaiser test of which the sensitivity was reported to be 5 µmol/g.^{2a}

In conclusion, we have developed a new type of colorimetric assay⁵ that can monitor the progress of the solid-phase *substitution reaction* using the dansyl group as the leaving group.

Acknowledgements

This work was supported by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology.

References

- Cin, M. D.; Davalli, S.; Marchioro, C.; Passarini, M.; Perini, O.; Provera, S.; Zaramella, A. Farmaco 2002, 57, 497.
- (a) Kaiser, E.; Colescott, R. L.; Bossinger, C. D.; Cook, P. I. Anal. Biochem. 1970, 34, 595; (b) Sarin, V. K.; Kent, S. B. H.; Tam, J. P.; Merrifield, R. B. Anal. Biochem. 1981, 117, 147.
- Hancock, W. S.; Battersby, J. E. Anal. Biochem. 1976, 71, 260.
- 4. Gisin, B. F. Anal. Chim. Acta 1972, 58, 248.
- Kay, C.; Lorthioir, O. E.; Parr, N. J.; Congreve, M.; McKeown, S. C.; Scicinski, J. J.; Ley, S. V. *Biotechnol. Bioeng.* 2001, 71, 110.
- (a) Yan, B.; Liu, L.; Astor, C. A.; Tang, Q. Anal. Chem.
 1999, 71, 4564; (b) Attardi, M. E.; Falchi, A.; Taddei, M. Tetrahedron Lett. 2000, 41, 7395; (c) Attardi, M. E.; Taddei, M. Tetrahedron Lett. 2001, 42, 2927; (d) Reddy, M. P.; Voelker, P. J. Int. J. Pept. Protein Res. 1988, 31, 345; (e) Kuisle, O.; Lolo, M.; Quiñoa, E.; Riguera, R. Tetrahedron 1999, 55, 14807.
- (a) Yan, B.; Li, W. J. Org. Chem. 1997, 62, 9354; (b) Vazquez, J.; Albericio, F. Tetrahedron Lett. 2001, 42, 6691; (c) Cournoyer, J. J.; Kshirsagar, T.; Fantauzzi, P. P.; Figliozzi, G. M.; Makdessian, T.; Yan, B. J. Comb. Chem. 2002, 4, 120.
- 8. Attardi, M. E.; Porcu, G.; Taddei, M. *Tetrahedron Lett.* **2000**, *41*, 7391.
- (a) Virgilio, A. A.; Ellman, J. A. J. Am. Chem. Soc. 1994, 116, 11580; (b) Badyal, J. P.; Cameron, A. M.; Cameron, N. R.; Coe, D. M.; Cox, R.; Davis, B. G.; Oates, L. J.; Oye, G.; Steel, P. G. Tetrahedron Lett. 2001, 42, 8531.
- (a) Atherton, E.; Sheppard, R. C. Solid Phase Peptide Synthesis: A Practical Approach; IRL Press: Oxford, 1989; (b) Carpino, L. A.; Ismail, M.; Truran, G. A.; Mansour, E. M. E.; Iguchi, S.; Ionescu, D.; El-Faham, A.; Riemer, C.; Warrass, R. J. Org. Chem. 1999, 64, 4324; (c) Fukuyama, T.; Jow, C.-K.; Chueng, M. Tetrahedron Lett. 1995, 36, 6373; (d) Miller, S. C.; Scanlan, T. S. J. Am. Chem. Soc. 1998, 120, 2690; (e) Manabe, S; Ito, Y. J. Am. Chem. Soc. 2002, 124, 12638.
- 11. Dansyl derivative has been used as solid-phase hydroxy protective group: Bergmann, F.; Pfleiderer, W. *Helv. Chim. Acta* **1994**, *77*, 988 and references cited therein.
- 12. Solvolysis in aqueous media has been reported: Lawrence, C.; Bell, I. M.; Abell, C.; Leeper, F. J. *Isr. J. Chem.* **1996**, *36*, 161.
- Solution phase Heck reaction was monitored: Stambuli,
 J. P.; Stauffer, S. R.; Shaughnessy, K. H.; Hartwig, J. F.
 J. Am. Chem. Soc. 2001, 123, 2677.